

Common Data Challenges in the Great Survey Era

Alex Szalay
The Johns Hopkins University

Outline

- Today's challenges
- SDSS lessons
- ▶ The road ahead: NVO+VAO
- Trends: how long can this continue?

Survey Trends

CMB Surveys (pixels)

1990	COBE	1000
2000	Boomerang	10,000
2002	CBI	50,000
2003	WMAP	1 Million
2008	Planck	10 Million

Angular Galaxy Surveys (obj)

Trigarar Garaxy Garreye (GB)				
•	1970 Lick	1M		
•	1990 APM	2M		
•	2005 SDSS	200M		
•	2008 PS1	1000M		
•	2010 VISTA	1000M		
•	2014 LSST	3000M		

Time Domain

- QUEST
- SDSS Extension survey
- Dark Energy Camera
- PanStarrs
- JDAM...
- LSST...

Galaxy Redshift Surveys (obj)

Galaxy Medallill Galveya (GDJ)				
1986	CfA	3500		
1996	LCRS	23000		
2003	2dF	250000		
2005	SDSS	750000		
	1986 1996 2003	1986 CfA 1996 LCRS 2003 2dF 2005 SDSS		

Petabytes/year by the end of the decade...

An Exponential World

- Scientific data doubles every year
 - caused by successive generations of inexpensive sensors + exponentially faster computing

- Changes the nature of scientific computing
- Cuts across disciplines (eScience)
- It becomes increasingly harder to extract knowledge
- > 20% of the world's servers go into data centers by the "Big 5"
 - Google, Microsoft, Yahoo, Amazon, eBay
- So it is not only the scientific data!

The Data Explosion

We see the Industrial Revolution in collecting scientific data

- Main Steps:
 - Acquire data (doubling)
 - Process/calibrate
 - Transform and load
 - Reorganize
 - Analyze/collaborate
 - Publish (~constant)

Technical Challenges

Data Access:

- Data sets have a power law distribution
- Move analysis to the data
- Locality is the key

Discovery:

- Shannon new dimensions
- Federation still requires data movement

Analysis:

Only max NlogN algorithms possible

SDSS Now Finished!

- As of May 15, 2008 SDSS is officially complete
- Final data release (DR7) on Oct 31, 2008
- Final archiving of the data in progress
 - Paper archive at U. Chicago Library
 - Deep Digital Archive at JHU Library
 - CAS Mirrors at FNAL+JHU P&A
- Archive will contain > 100TB
 - All raw data
 - All processed/calibrated data
 - All versions of the database (>18TB)
 - Full email archive and technical drawings
 - Full software code repository
 - Telescope sensor stream, IR fisheye camera, etc.

Capture Communications

- No 'Einstein letters' today... very little paper trail
- Proposals and papers archived
- Most large projects communicate through email exploders and phonecons
- Often reaching back to the Internet Archive
- Some technical info on WIKI pages
- Science oriented blogs are appearing
- Collaborative workbenches emerging
- More instant messaging, especially next generation
- What can we and what should we capture?
- What will science historians do in 50 years?

Public Use of the SkyServer

- Prototype in data publishing
 - 500 million web hits in 6 years
 - 1,000,000 distinct users vs 15,000 astronomers
 - Delivered 50,000 hours of lectures to high schools
 - Delivered > 100B rows of data
 - Everything is a power law
- Interactive workbench
 - Casjobs/MyDB
 - Power users get their own database, no time limits
 - They can store their data server-side, link to main data
 - Simple analysis tools (plots, etc)

Over 2,400 'power users'

GalaxyZoo

- Built on top of SkyServer
- 27 million visual galaxy classifications by the public
- Enormous publicity (CNN, Times, Washington Post, BBC)
- ▶ 100,000 people participating, blogs, poems,
- Now truly amazing original discovery by a schoolteacher
- Observations scheduled on Hubble, VLBA
- A new pattern in using scientific data!

National Virtual Observatory

- NSF ITR project, "Building the Framework for the National Virtual Observatory" is a collaboration of 17 funded and 3 unfunded organizations
 - Astronomy data centers
 - National observatories
 - Supercomputer centers
 - University departments
 - Computer science/information technology specialists
- Similar projects now in 15 countries world-wide
- => International Virtual Observatory Alliance

Current Status

- ▶ The project has ended on Nov 1, 2008
 - Most of our current people now part time
- The sociological transformation successfully done:
 - Main data providers now all offer compliant services
- Service-oriented architecture, before Web 2.0 wave
- Deliberately NOT a full top-down design
- Creation of standards took longer than expected
- Need to transition from research to proper facility
- NSF/NASA AO for VAO announced in 2008
- Joint proposal by AUI/AURA submitted in Apr 08
- It is inevitable!

Data Sharing/Publishing

- What is the business model (reward/career benefit)?
- Three tiers (power law!!!)
 - (a) big projects
 - (b) value added, refereed products
 - (c) ad-hoc data, on-line sensors, images, outreach info
- We have largely done (a), mandated by NSF/NASA
- Need "Journal for Data" to solve (b)
- Need "VO-Flickr" (a simple interface) for (c)
- Mashups are emerging (GalaxyZoo)
- New public interfaces to astro data (Google Sky, WWT)
- Integrated environment for 'virtual excursions' for education (C. Wong)

'Journal of Data' in Astronomy

Create new paradigm in publishing scientific data

- Team up with the main journals in astronomy
- On-line supplement for data related to journal articles
- Easy submission process for authors
- Data replicated among university libraries
- Data guaranteed to exist for 20 years
- Uses Fedora Commons
- Curation, curation, curation!!!

with S. Choudhury, T. DeLauro (JHU Eisenhower Lib), R. Hanisch (Space Telescope), E. Vishniac (McMaster), C. Lagoze (Cornell)

Continuing Growth

How long does the data growth continue?

- High end always linear
- Exponential comes from technology + economics
 - rapidly changing generations
 - like CCD's replacing plates, and become ever cheaper
- How many new generations of instruments do we have left?
- Are there new growth areas emerging?
- Software is becoming a new instrument
 - Simulations!!
 - hierarchical data replication
 - Value added data/ mashups

Simulations

Cosmological simulations have 109 particles and produce over 30TB of data (Millennium, Aquarius, VLii)

- Build up dark matter halos
- Track merging history of halos
- Use it to assign star formation history
- Combination with spectral synthesis
- Realistic distribution of galaxy types
- Too few realizations
- Hard to analyze the data afterwards ->need DB (Lemson)
- What is the best way to compare to real data?
- Data volumes soon reaching Petabytes

VO Technology

- The next surveys will generate Petabytes
- We will need to save them, move them
 - several big archive centers connected
 - shakeout
- Archives also computational services
 - driven by economics: cheaper to process than move
- Always an open-ended modular system
- Need Journal for Data
 - curation is the key

VO Economics

- The Price of Software
 - 30% from SDSS, 50% for LSST
 - should there be full reuse vs no reuse today?
 - neither: we are not systems integrators
 - risks and benefits are power law
- The Price of Data
 - \$100,000 / paper (Norris etal)
 - Drives new projects
 - For SDSS there are 3,000 refereed papers for \$100M
- Level budgets

VO Sociology

- Learn from particle physics
 - do not for granted that there will be a next one
 - small is beautiful
- What happens to the rest of astronomy after the world's biggest telescope?
- The impact of power laws:
 - we need to look at problems in octaves
 - the astronomers may be the tail of our users
 - there is never a natural end or an edge (except for our funding)
- Unpredictable changes, new players

Collaborative Trends

- Science is aggregating into ever larger projects
- Collection of data increasingly separated from analysis, connected with the data publications
- VO is inevitable, a new way of doing science, present on every physical scale today
- Natural size for close collaborations is small
- May be the only way to do 'small science' in 2020

Near Future

- Surveys role increasing, more archival data
- Relatively easy to predict until 2010
 - Exponential growth continues
 - Most ground based observatories join the VO
 - More and more sky surveys in different wavebands
 - All sky Xray survey is missing, nothing since ROSAT
- Dominance of Large Imaging Surveys
 - Fastest explosion of data in radio
 - Urgently need large wide field spectroscopy survey!
- Simulations will reach petabytes
 - Will have VO interfaces: can be 'observed'

Beyond 2010

- PetaSurveys are coming on line (Pan-STARRS, VISTA, LSST) and becoming public
- Petabytes will need a hierarchical organization
 - Need a proper "impedance match"
- Single Query analysis paradigm will break
- Expect world-wide network of large archive/compute centers
- Business model unclear: public data does not necessarily mean accessible data...
- Moore's Law comes to the rescue (up to a point)
- Changing funding climate, unpredictable

"The future is already here. It's just not very evenly distributed"

William Gibson